1,2-CYCLOPROPA-4,5-CYCLOBUTABENZENE. A NOVEL STRAINED BENZENE DERIVATIVE

C. J. Saward and K. P. C. Vollhardt* (Department of Chemistry, University of California, Berkeley, California 94720)

(Received in USA 22 October 1975; received in UK for publication 13 November 1975)

A recent report¹ concerned with the synthesis of 1,2-cyclopropopa-4,5cyclobutabenzene ($\underline{4}$) (30-40% yield) via the Billups-route² to benzocyclopropenes prompts us to report our own efforts to obtain this fascinating hydrocarbon via the Radlick-route³. The required precursor <u>3</u> was synthesized as shown in the scheme, the crucial step involving the cobalt catalyzed cooligomerization⁴ of trimethylsilylpropargylether <u>2</u> and 1,5-hexadiyne (<u>1</u>).

Ether <u>2</u> was prepared from propargylmethylether⁵ by treatment with <u>n</u>-butyl-lithium followed by trimethylsilylchloride in ether [90%, b.p. 144-145°, NMR (CCl₄) τ 6.00 (s, 2H), 6.70 (s, 3H), 9.83 (s, 9H)]⁶. Reaction of <u>1</u> with <u>2</u> in the presence of catalytic amounts of n⁵-cyclopentadienyl cobalt dicarbonyl using high dilution conditions⁴ gave the benzocyclobutene <u>3</u> as a colorless oil [55%, b.p. (microstill) 60° (oil bath temperature)/0.01T, m/e 220 (M⁺, 3%), 205 (60%), 175 (100%), NMR (CCl_u) τ 2.88 (b.s., 1H), 3.02 (b.s., 1H), 5.58 (b.s., 2H), 6.72 (s, 3H), 6.83 (s, 4H), 9.72 (s, 9H)]⁶. Electrophilic displacement of the silyl-group with bromine (Br₂/CCl₁/RT) resulted in 4-methoxymethyl-5-bromobenzocyclobutene purified by column chroma tography (silica) and microdistillation (60°/0.01 T) as a colorless oil [65%, $\underline{m}/\underline{e}$ 228, 226 (M⁺, 1.1, 29%), 147 (100%); NMR (CCl_u) τ 2.87 (b.s., 2H), 5.60 (b.s., 2H), 6.60 (s, 3H), 6.85 (b.s., 4H)]⁶. This bromide was then treated with a slight excess of n-butyl-lithium in THF at -70° (deep red coloration), followed by reflux (30 mins). Vacuum transfer of the volatiles and p.g.l.c. (10' x 3/8", UCW 98 20% Chrom W-AW, dmsc glass) gave cyclopropacyclobutabenzene $\frac{4}{2}$ as a light yellow oil of pungent odor [\sim 5%⁷, m/e 116 (M⁺, 62%), 115 (100%), NMR (d_o-THF) τ 3.05 (s, 2H) 6.83 (b.s., 6H), UV (ether) λ max 285, 288, 295]. One of the side products in the formation of $\frac{4}{2}$ is 2-methoxymethylbenzocyclobutene [m/e 148, NMR (CCl₁) τ 3.03 (m, 3H), 5.66 (s, 2H), 6.73 (s, 3H), 6.84 (s, 4H)]⁶, possibly derived from 4 by reaction with lithium methoxide.

It is interesting to note that while the electronic spectrum of $\underline{4}$ clearly exhibits strain related bathochromic shifts when compared to benzo-cyclobutene ($\underline{5}$)⁸, 1,2.4,5-dicyclobutabenzene ($\underline{6}$)⁹ and cyclopentaindacene $\underline{7}^{10}$, the NMR spectrum reveals fairly "normal" chemical shifts. This is in

contrast to 2,3.6,7-dicyclobutabiphenylene $(\underline{8})^{11}$ the aromatic protons of which absorb at relatively high field [$\tau(CCl_{\mu})$ 3.85], possibly due to the antiaromatic character of the central four-ring¹².

Finally, it appears that the approach to benzocyclopropenes developed by $Billups^2$ is a more viable route to other annelated derivatives.

<u>Acknowledgment</u>. Support from the donors of the Petroleum Research Fund, administered by the American Chemical Society, and the Energy Research Development Administration is gratefully acknowledged.

References and Notes

- 1. D Davalian and P. J. Garratt, J. Amer. Chem. Soc., in press. We thank Dr. P. J. Garratt for providing us with a preprint prior to publication.
- W. E. Billups, A. J. Blakeney, and W. Y. Chow, J C S Chem. Commun., 1461 (1971), W. E. Billups and W. Y. Chow, J. Amer. Chem. Soc., <u>95</u>, 4099 (1973), for another application, see also J Ippen and E. Vogel, Angew. Chem., <u>86</u>, 780 (1974), Angew. Chem. Internat. Ed., <u>13</u>, 736 (1974).
- 3. P. Radlick and H T. Crawford, J.C S. Chem. Commun., 127 (1974)
- W. G L. Aalbersberg, A J. Barkovich, R. L. Funk, R. L. Hillard III, and K P. C. Vollhardt, J. Amer Chem Soc., <u>97</u>, 5600 (1975), R. L. Hillard III and K. P. C. Vollhardt, Angew. Chem., in press.
- L. Brandsma, "Preparative Acetylenic Chemistry", Elsevier, New York, 1971, p. 172.

- 6 All new isolated compounds gave satisfactory analytical and/or spectral data
- 7 Compound <u>4</u> could not be obtained completely pure due to apparent decomposition on exposure to g c. conditions. Its physical and chemical properties agree well with the reported data¹.
- 8 See for instance A. Sanders and W. P. Giering, J. Org Chem., 38, 3055 (1973).
- M. P. Cava, A. A. Deana, and K. Muth, J. Amer. Chem. Soc., <u>82</u>, 2524 (1960)
- 10. H. Rapoport and G Smolinsky, J. Amer Chem. Soc, <u>82</u>, 1171 (1960)
- 11. R. L. Hillard III and K. P C. Vollhardt, J Amer. Chem. Soc., in press.

12. K. P C. Vollhardt, Top. Current Chem., 59, 113 (1975).